# Hurricane Harvey Hazard Risk Index

JESSICA LI

GIS SPECIALIST | SFU FACILITIES SERVICES



### Agenda

- 1. Project Background
- 2. Project Objectives and Deliverables
- 3. Project Data
- 4. Methodology & Workflow
- 5. Project Results

#### **Project Introduction**

#### Project Topic: Natural Hazard

#### Project Statement:

This project aim to help geo-science researchers to investigate if the Local Climate Zone Urban Classification Scheme is suitable for simulating hurricane events by using GIS <u>to identify high risk regions</u> in the case study of Hurricane Harvey.

#### Project Background





#### The Local Climate Zone Classification Scheme



A comprehensive and micro level land use classification system

Local Climate Zones (LCZ) offer a climate-aware and standardized classification scheme composed of 17 urban and natural landscape classes.

### Project Objectives

- 1. To integrate weather data for spatial analysis
- 2. To create Hurricane Harvey Risk Index Map
- 3. To explore the spatial relationships among hazards, exposure, and social vulnerability index

### Deliverables

- 1. A map of hazard Hurricane Harvey's flooding coverage, flood depth, and cumulative rainfall in Houston
- 2. A map of exposure number of homes, percentage of mobile homes, population density, and distance to the closest river in Houston
- 3. A map of vulnerability demography and public health data in Houston
- 4. A map of Hurricane Harvey Risk Index
- 5. A set of spatial analysis output data

### Project Data

| Dataset                     | Туре     | Data Format |
|-----------------------------|----------|-------------|
| Flood                       | Image    | Raster      |
| Rain                        | Image    | Raster      |
| Environmental Justice index | Polygon  | Shapefile   |
| Social Vulnerability index  | Polygon  | Shapefile   |
| Shelter                     | Point    | Shapefile   |
| River                       | Polyline | Shapefile   |
| Huston Census Tract         | Polygon  | Shapefile   |

### Methodology

Three themes (Hazard, Exposure, Vulnerability)

Altogether 23 factors were considered (**Hazard**: 3, **Exposure**: 3, **Vulnerability**: 16 (sensitivity) , 1 (capacity))

Risk = (Hazard + Exposure + Vulnerability)/3 Vulnerability = Sensitivity – Adaptive Capacity

### Vulnerability Definition

| Hazard         |             |                          | Exposure     |                    |                   | Vulnerability (Sensitivity – Capacity) |                        |              |          |             |                        |              |                      |              |                |            |                     |        |        |                    |          |                         |
|----------------|-------------|--------------------------|--------------|--------------------|-------------------|----------------------------------------|------------------------|--------------|----------|-------------|------------------------|--------------|----------------------|--------------|----------------|------------|---------------------|--------|--------|--------------------|----------|-------------------------|
|                |             |                          |              |                    |                   |                                        | Sensitivity            |              |          |             |                        |              |                      |              |                |            | <u>Capacity</u>     |        |        |                    |          |                         |
| Flood coverage | Flood Depth | Mean cumulative rainfall | No. of homes | Population density | Distance to river | Poverty                                | No High School Diploma | Unemployment | Age ≥ 65 | No Internet | Not Speak English Well | Uninsuranced | <b>Crowded Homes</b> | Mobile homes | Group Quarters | Disability | High Blood Pressure | Asthma | Cancer | Poor Mental Health | Diabetes | Distance to the shelter |

#### Workflow



| Ex                    | posure                                               | H                              | azard                                                                      | Vulnerability     |                                                                         |  |  |  |
|-----------------------|------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------|--|--|--|
| Population<br>Density | Attribute Table                                      | Flood Depth                    | Pastor Clip Tool                                                           | Capacity          | Create buffer<br>Erase<br>Union<br>Feature to Raster                    |  |  |  |
|                       | Field Calculation<br>Normalization                   |                                | Raster Calculator<br>Normalization                                         |                   |                                                                         |  |  |  |
| Home<br>Density       | Feature to Raster                                    | Mean<br>Cumulative<br>Rainfall |                                                                            | 16<br>Sensitivity | Extract from SVI & EJI layers<br>Feature to Raster<br>Raster Calculator |  |  |  |
| River<br>Distance     | Create buffer<br>Union<br>Erase<br>Feature to Raster | Flood<br>Coverage              | Attribute table<br>Field Calculation<br>Normalization<br>Feature to Raster |                   |                                                                         |  |  |  |

#### Exposure = (Population Density + Home Density + River Distance) / 3



Population Density (Normalized)

Home Density (Normalized)

**River Distance** 

#### Hazard = (Flood Coverage + Flood Depth + Mean Cumulative Rainfall)/3



Flood Coverage (Normalized)



Flood Depth (Normalized)



Mean Cumulative Rainfall (Normalized)

### Vulnerability = Sensitivity- (Capacity \* 0.1)



### Vulnerability = Sensitivity-(Capacity \* 0.1)



Capacity = Shelter Distance







K



Project Results





The result is very close to expectations

- Local Climate Zone Urban Classification Scheme is able to simulating hurricane events
- High risk neighborhoods are able to identify

Spatial awareness and visualization are the two main highlights that make GIS a powerful tool in disaster management and mitigation planning.

## Thank you!

SFU Facilities Services Mapping Platform: https://viewsfu.its.sfu.ca/apps/vertisee/public/

