

What are Geographic Automata Systems?

- Framework for modelling dynamic geospatial systems from the bottom-up
 - Characterized by cellular automata and agent-based models
- Useful for representing, examining, and explaining patterns that emerge from local interactions

Demonstration 1: Urban Growth Modelling

Goals

- To demonstrate and compare the Basic and Advanced Cellular Automata tools for modelling urban growth in the City of Chilliwack, British Columbia
- To show how a popular machine learning-cellular automata (ML-CA) approach can be implemented efficiently and without programming

Results

- *Model A* and *Model B* showed similar calibration measures
- Model performance deviates in the validation period

 Model B forecasted urban developments to more realistic locations in the validation period and fewer "false alarms" (i.e., incorrectly simulated new developments) in calibration and validation periods.

Values copied from the Model Evaluation Reports

	Metric	Model A (Basic CA)	Model B (Advanced CA)
Calibration (2000 – 2010)	Overall Accuracy (%)	94.00	94.03
	Urban Accuracy (%)	79.71	79.79
	Карра	0.819	0.820
	Figure of Merit (FOM)	0.346	0.348
Validation (2010 – 2020)	Overall Accuracy (%)	93.14	93.42
	Urban Accuracy (%)	84.94	85.51
	Карра	0.814	0.821
	Figure of Merit (FOM)	0.469	0.484

Quality of a model's forecasted changes via FOM components

	Metric	Model A (Basic CA)	Model B (Advanced CA)
Calibration (2000 – 2010)	Hits	10,338	10,394
	Misses	14,895	14,839
	False Alarms	4,662	4,606
Validation (2010 – 2020)	Hits	19,707	20,158
	Misses	12,034	11,583
	False Alarms	10,293	9,842

Demonstration 2: Mountain Pine Beetle Infestation Scenarios

Goals

- To implement hypothetical Mountain Pine Beetle (MPB) infestation scenarios around Lightning Lake in Manning Provincial Park, British Columbia, with real-world data
- To demonstrate the effects of layering transition rules and rule types to implement simple to complex model behaviours

https://www2.gov.bc.ca/gov/content/industry/forestry/ma naging-our-forest-resources/forest-health/forestpests/bark-beetles/mountain-pine-beetle

https://www2.gov.bc.ca/assets/gov/farming-naturalresources-and-industry/forestry/foresthealth/beetles/beetle_forests_british_columbia.jpg

van Duynhoven, Alysha, and Suzana Dragićević. "The Geographic Automata Tool: A New General-Purpose Geosimulation Extension for ArcGIS Pro." Applied Sciences 14, no. 15 (2024): 6530.

Other Use Cases for the *Geographic Automata Add-In*

Research settings

• E.g., implementing experiments, baselines, and rapid comparisons without programming expertise

Educational settings

• E.g., teaching spatial model building in undergraduate or graduate courses

Decision making

 E.g., exploring different "what-if" scenarios for municipal decisionmaking

